
© November 2020

(D o n ’ t R e p e a t Y o u r s e l f) (S t r u c t u r e d Q u e r y L a n g u a g e)

TABLE OF CONTENTSTABLE OF CONTENTS

PROBLEM STATEMENT

2

© November 2020

INTRODUCTION01

2

02
DATA PLATFORM

a. Scope of Data

b. The Use Case

c. Transform Rule for Lookup Process

03

THE ISSUE04
THE SOLUTION

a. Modularizing SQL

b. Helper Utility

c. Transform #1

d. Transform #2

e. Transform #3

f. Keeping Pipelines DRY

05

FINAL THOUGHTS06

PROBLEM STATEMENTPROBLEM STATEMENT

INTRODUCTIONINTRODUCTION

As a data professional I have spent most of my career operating with information in relational databases and
SQL(Structured Query Language) as the choice of language to analyze and gain intelligence. The thing I enjoy
most about the language is its simplicity: clearly declare data points, define operations to be executed on them and
state the relationships between the entities. This also means that each time I have to query for information or
transform data based on business rules, I start with the declarations afresh. My colleagues who are proficient at
programming languages and OOPs (Object Oriented Programing) principles find it exhausting, the lack of
reusability in SQL and cringe at the possibility of repeated code.

To alleviate some of these intrinsic limitations with SQL language, the data engineers at Yieldmo have designed a
straightforward approach that leverages open source Python libraries such as Jinja to assemble and render SQL
statements at time of application execution. I have the honor of documenting their work here with an aim to speak to
SQL engineers such as myself, how modularizing code helps in ease of read and makes room for common code.

3 © November 2020

SQL codes are long, repeated and complex.
How do I break down SQL code to increase legibility and code reuse?

DATA PLATFORMDATA PLATFORM

Let me begin with an overview of our data platform. Today we have over 12+ ingest pipelines bringing in first party
data into our data lake on Snowflake. These pipelines process close to 60TB of data per day. The data pipelines at
Yieldmo follow the ELT (Extract Load Transform) model. The data from the source(AWS S3) is Extracted and
Loaded in a raw form (json, parquest, csv etc) into our Snowflake data lake. We subsequently leverage Snowflake
distributed compute to perform the transforms to flatten the semi structured data into structured columns for
downstream analytics process. There are about 200 transformation rules executed every 5min in each pipeline. All
transformation rules are written in SQL language. We use Python wrapper scripts to execute these SQL codes.

The below workflow diagram demonstrates the transformation workflow that each of the data points go through
before making their way to structured tables. In this post, we will be focusing on the ad_impression pipeline and
Lookup Transform code.

4 © November 2020

YIELDMO DATA PLATFORM

SCOPE OF DATA

The ad_impression pipeline ingests all the data points of an ad impression request made through a web/app
content page. An ad request page would be such as https://cnn.com/home. Payload of Ad Impression data, includes
a combination of distinct data points such as impression id, time of impression. Payload also contains highly
cardinal text attributes such as Device info, Location, Browser info etc. A typical raw ad_impression payload would
look like this:

5 © November 2020

In this post, we will follow the transformation process of converting the cardinal data points in raw ad_impression
into unique identifiers and recording the distinct values in a lookup table. I am going to name this transformation:
the Lookup Transform process. The ad_impression pipeline has close to 20 such lookup processes transforming
and recording corresponding unique Ids in the destination table. To explain the concepts clearly, I'll follow the
transform cycle for the Browser lookup process. As shown in the sample record earlier, data points
BROWSER_NAME, BROWSER_VER makeup Browser lookup.

6 © November 2020

THE USE CASE

AD IMPRESSION: LOOKUP ELT

7 © November 2020

ELT rule for lookup transform would look like:

STEP 1
Identify the source

columns attributes that
make up a lookup

Step#1 of the transforms differs per source - lookup combination. While Step #2 and Step #3 are standard rules
that all lookup transforms follow. Since all the data transformation happens in Snowflake, the ELT code is written in
SQL language. Below is snippet of Impression_transform.sql file:

STEP 2
Load new attribute

values that do not exist
in the lookup table

STEP 3
Insert hashed ID field

into structured  
destination table

TRANSFORM RULE FOR LOOKUP PROCESS

8 © November 2020

THE ISSUETHE ISSUE

THE SOLUTIONTHE SOLUTION

I want to highlight two main issues with the above described setup.

First: The transform sql file similar to the snippet above is usually over 3000 lines of sql code. The business logic is
embedded somewhere in these seemingly large monolithic pieces of code which is hard to read and implement
future changes.

Second: Adding some more complexity to the ELT process, sometimes the same group of attributes such as
Browser info comes in multiple ingest pipelines and has to go through the exact same lookup transformation in each
occasion. As it happens, to avoid any error, an engineer will typically copy/ paste the same sql in all other pipelines.
There goes the DRY (Don’t Repeat Yourself) principles out of the door.

9 © November 2020

Now that we have a fairly good understanding of the lay of the land, in the following sections I’ll walk through how
we have evolved the SQL code for the Lookup process. Here I’ll demonstrate how the same SQL code can be
modularized to allow for ease of read and kept DRY for reusability. We have instrumented these concepts through
Jinja libraries in Python. Think of Jinja as a programming language that can be used to build out statements which
then get executed within Python’s main program. Jinja templates offer various functionalities such as variable
substitution, filters, loops, function calls etc most of which we have leveraged in this implementation.

The idea of modularity is to break down long procedural codes into smaller sub routines which then gets called
within a much shorter main program.

Modularity serves two purposes:

• One the decomposition of long main code aids to ease of readability and faster troubleshooting.
• Second smaller sub routines allow design for reusable/ common code objects which can  

be called in multiple workflows.

MODULARIZING SQL

Referring to the transform rules for the Lookup process described earlier, transform Step#1 differs per source -
lookup combination, while transform Step #2&3 is standard rules that all lookup transforms follow. So there is
opportunity for building common code. From the code snippet provided earlier, it is clear that the INSERT
statements for Step #2 can be generated once we have the source table name, lookup table name and the map
of corresponding column attributes. The map of return column per lookup table will get us to Step #3. We have
achieved generating the required statements for Step #2 and #3 through a helper utility. The helper utility takes the
necessary parameters to generate an INSERT template in Jinja. The same helper utility has a class object to
provide the return column fields.

10 © November 2020

HELPER UTILITY

This helper utility sits outside of any of the pipeline load processes. In the main pipeline ingest sql template where
we earlier had code for INSERT into the lookup table, I have now replaced them with calls to the utility. When jinja
renders the main ingest sql template it also appends the INSERT statements by executing calls to the utility
functions. So when the final sql renders it looks identical to the original Impression_transform.sql. In the
ad_impression pipeline alone there are over 19 such lookup transforms, for this Jinja allows us to iterate through a
lookup list to create all the 19 insert statements and corresponding return columns. With the helper library in place, I
am able to break down the main program into subroutines and introduce looping functionality.

Now let me give a walk through of the implementation of the three transform steps and show we have achieved
modularity for SQL code using Python and Jinja.

11 © November 2020

Let’s create a lookup table info file called lookup_map, which keeps track of lookup tables, mapping columns, join
columns and return columns. Note this file will have an entry for all lookups irrespective of pipeline.

Lets instantiate a dictionary object that maps destination table with LookupHelper object list.

TRANSFORM #1

In the main sql template, instead of explicit insert statements, I have added a for loop that iterates over the
LookupHelper object in dictionary lookup_helper_object_list to generate insert statements per lookup.

12 © November 2020

In the main sql template, at the final insert into the destination table sql statement, I appended a for loop that
iterates over LookupHelper object in dictionary lookup_helper_object_list to return column.

When jinja renders the main sql template, it executes the helper call, variable substitutes the source, lookup table
names and column list to generate insert sql and return columns. Jinja will iterate over the object list and generate
statements per lookup table. Jinja appends these statements to the finally executed sql. Below is modular
Impression_transform.sql with calls for insert statements and return columns. Notice how the sql code is now rather
small and broken down into subroutines. Future enhancements for new lookup requests or adding new attributes to
existing lookups, we just have to change the lookup_map and dictionary files.

TRANSFORM #2

TRANSFORM #3

13 © November 2020

We start from a place of anti-DRY. As it happens in most platform development lifecycles, our ELT pipelines were
built iteratively one at a time over the course of 3-4 years. The engineering team was sensitive to time to market,
hence the initial versions of the transform code looked more like a long form running sql. The transformation logic is
copy pasted in multiple locations to avoid errors. Future enhancements to the pipelines such as adding a new
lookup attribute meant changing the same code in multiple locations, which in turn increased testing and
deployment time. All this code duplication resulted in inefficiency in release cycles and incident triage.

Transformation rules for Lookups across all pipelines follow the same steps. I.E. Identify and insert unique values
from the source into a lookup table, replace cardinal text fields with corresponding IDs in the flattened destination
table. They differ in source to lookup mapping, attribute fields that make up the lookup and destination table.

Below is a visual of how we have achieved DRY with lookup transformations by creating two helper libraries:
Lookup_helper, lookup_map. Both these libraries help us encapsulate the repeated parts of the lookup transform
rules. While the dictionary defined in the beginning, lookup_helper_obj_list : helps us track a map of lookups to
field list to destination tables

KEEPING PIPELINES DRY

BY INDU NARAYANBY INDU NARAYAN

FINAL THOUGHTSFINAL THOUGHTS

SQL is strongest as a medium for data analysis and manipulating information in a relational system. SQL’s
declarative nature is also limiting when we adapt it as our core language to build out an enterprise wide ELT
platform. SQL rendered using Python Jinja templates is a simple way to introduce concepts such as inheritance,
variable substitution, loops within the SQL code that we already love and are used to. In a data platform our size,
modular and DRY code patterns bring in tremendous efficiencies. Just in the sample versions of the
Impression_transform.sql shared earlier, we can see that modular code has reduced the code lines by 40%.
Standardizing Lookup transform processes across pipelines with the use of helper libraries has reduced the
development cycles from 5 days to 1 day.

SQL on steroids, that should have been the title of this post. My SQL friends, brave this whole new world of modular
and reusable SQL code. It is a crazy journey, but believe me as it comes from a long time practitioner, all this new
flexibility in an already powerful data manipulation language makes SQL a killer language for platform development.
Hope discussion of our use case here will jog new code design ideas for your data systems.

14 © November 2020

Indu is a seasoned leader with a successful track
record of developing high performance teams. As
VP of Data Architecture, she is responsible for all
aspects of Data at Yieldmo. She and her team are
constantly involved in innovating scalable cloud
based data platform that serve as the foundation
for analytics products for Programmatic, Header,
Measurement businesses.

Indu’s passion for information and engineering has
been core to how she has shaped the data practice
at Yieldmo. Given the success of Yieldmo Data
Platform, she and her team are often invited for
speaking engagements at tech conferences in the
country. At these architecture forums the team has
evangelized Yieldmo’s design of efficient data-lake
platform and story of their transformation journey.

VP OF DATA ARCHITECTURE AT YIELDMO

LEARN MORE ABOUT YIELDMO VISIT US AT WWW.YIELDMO.COM

http://www.yieldmo.com
http://www.yieldmo.com

© November 2020

(D o n ’ t R e p e a t Y o u r s e l f) (S t r u c t u r e d Q u e r y L a n g u a g e)

